Malpighian Tubules as Novel Targets for Mosquito Control
نویسندگان
چکیده
The Malpighian tubules and hindgut are the renal excretory tissues of mosquitoes; they are essential to maintaining hemolymph water and solute homeostasis. Moreover, they make important contributions to detoxifying metabolic wastes and xenobiotics in the hemolymph. We have focused on elucidating the molecular mechanisms of Malpighian tubule function in adult female mosquitoes and developing chemical tools as prototypes for next-generation mosquitocides that would act via a novel mechanism of action (i.e., renal failure). To date, we have targeted inward rectifier potassium (Kir) channels expressed in the Malpighian tubules of the yellow fever mosquito Aedes aegypti and malaria mosquito Anopheles gambiae. Inhibition of these channels with small molecules inhibits transepithelial K⁺ and fluid secretion in Malpighian tubules, leading to a disruption of hemolymph K⁺ and fluid homeostasis in adult female mosquitoes. In addition, we have used next-generation sequencing to characterize the transcriptome of Malpighian tubules in the Asian tiger mosquito Aedes albopictus, before and after blood meals, to reveal new molecular targets for potentially disrupting Malpighian tubule function. Within 24 h after a blood meal, the Malpighian tubules enhance the mRNA expression of genes encoding mechanisms involved with the detoxification of metabolic wastes produced during blood digestion (e.g., heme, NH₃, reactive oxygen species). The development of chemical tools targeting these molecular mechanisms in Malpighian tubules may offer a promising avenue for the development of mosquitocides that are highly-selective against hematophagous females, which are the only life stage that transmits pathogens.
منابع مشابه
Na(+)/H(+) exchange in mosquito Malpighian tubules.
Fluid secretion and intracellular pH were measured in isolated mosquito Malpighian tubules to determine the presence of Na(+)/H(+) exchange. Rates of fluid secretion by individual Malpighian tubules in vitro were inhibited by 78% of control in the presence of 100 microM 5-(N-ethyl-n-isopropyl)-amiloride (EIPA), a specific inhibitor of Na(+)/H(+) exchange. Steady-state intracellular pH was measu...
متن کاملTranscriptomic Evidence for a Dramatic Functional Transition of the Malpighian Tubules after a Blood Meal in the Asian Tiger Mosquito Aedes albopictus
BACKGROUND The consumption of a vertebrate blood meal by adult female mosquitoes is necessary for their reproduction, but it also presents significant physiological challenges to mosquito osmoregulation and metabolism. The renal (Malpighian) tubules of mosquitoes play critical roles in the initial processing of the blood meal by excreting excess water and salts that are ingested. However, it is...
متن کاملThe Aquaporin Gene Family of the Yellow Fever Mosquito, Aedes aegypti
BACKGROUND The mosquito, Aedes aegypti, is the principal vector of the Dengue and yellow fever viruses. During feeding, an adult female can take up more than its own body weight in vertebrate blood. After a blood meal females excrete large amounts of urine through their excretion system, the Malpighian tubules (MT). Diuresis starts within seconds after the mosquito starts feeding. Aquaporins (A...
متن کاملThe control of the diuresis following a blood meal in females of the yellow fever mosquito Aedes aegypti (L).
Control of post-feeding diuresis in females of the mosquito Aëdes aegypti has been studied by means of a weighing technique and simple surgical procedures. The primary controlling factor is (as in the larva) a nervous feedback mechanism and not an increased production of diuretic hormone. As the mosquito ingests blood, sensory information from the distending abdomen reaches the mid gut via the ...
متن کاملThe excretion of NaCl and KCl loads in mosquitoes. 1. Control data.
The handling of Na(+) and K(+) loads was investigated in isolated Malpighian tubules and in whole mosquitoes of Aedes aegypti. Isolated Malpighian tubules bathed in Na(+)-rich Ringer solution secreted Na(+)-rich fluid, and tubules bathed in K(+)-rich Ringer solution secreted K(+)-rich fluid. Upon Na(+) loading the hemolymph, the mosquito removed 77% the injected Na(+) within the next 30 min. Th...
متن کامل